How can I solve the maths equations quickly

These calculations may help you to solve big calculations. Following are the most used equations which help you to solve any big mathematical equations.

  1. \,\, \sqrt{x}=? : 
    x = , =
  2. \,\, \sqrt[{n}]{x}=? : 
    x = , n = , =
  3. \,\, x^{n}=? : 
    x = , n = , =
  4. \,\, e^{x}=? : 
    x = , =
  5. \,\, log_e(n)=? : 
    n = , =
  6. \,\, log_y(x)=? : Returns the logarithm of x base y, Note: when x = 10n sometimes output will be the number with .99999999, please round it upwards to the nearest integer. Example: 1000 = 103, when x = 1000, y = 10 output will be 2.9999999999999996 due to floating-point rounding = 3  
    y = , x = , =
  7. How can we find the antilog base 10 of 3 ? It is just a example. 1000 = 103 , Therefore log101000 = 3.  Therefore, Antilog base 10 of 3 is equal to 103. antilog10(x) = ? or   \,\,log_{10}^{-1} (x)=\,\,10^x : 
    x = , =
  8. Same as the above in 7, we can calculate antiloge(x) = ? or
    \,\,log_{e}^{-1} (x)=\,\,e^x :
    x = , =
  9. \,\,ax^2+bx+c=0, \,x=?,\, should\, be\, \sqrt{b^2-4ac}\geq 0 \,: 
    a = , b = , c = , :
    x = or x =
  10. \ \left( \begin{array}{c|ccc} & x & y & c \\ \hline &a&b&c\\&l&m&n\\ \end{array} \right)ax+by+c = 0       and
    lx+my+n = 0       then x=?, y=?
    a = , b = , c = ,
    l = , m = , n = , :
    x = and y =
  11. Convert degrees to radians, Input valuer of θ in degrees.
    \,\,(\frac{\pi}{180^0})\times\theta^0 \,\,radians = ?,
    θ = degrees, = radians
  12. Convert (degrees, minutes, seconds) to radians, Input value for θ.
    θ = degrees, minuites, seconds
    Answer = radians
  13. Convert radians to degrees, Input value of x in radians.
    \,\,(\frac{180^0}{\pi})\times{x}\,degrees=?
    x = radians, = degrees
  14. sin(θ) = ? or sine(θ) = ?, Input the value of θ in degrees.
    θ = degrees, =
  15.  \,\,\sin^{-1}(x)=?, Arcsine(sine inverse) of x, answer is in radians, 1>input value(x)>-1:
    x = radians,
    = radians degrees
  16. cos(θ) = ?, Input the value of θ in degrees.
    θ = degrees, =
  17. \,\,\cos^{-1}(x)=?, Arccosine(cos inverse) of x, answer is in radians, 1>input value(x)>-1:
    x = radians,
    = radians degrees
  18. tan(θ) = ?, Input the value of θ in degrees, Remember tan(900) = ∞.
    θ = degrees, =
  19. \,\,\tan^{-1}(x)=?, arctangent(tan inverse) of x, answer is in radians, ∞>input value(x)>0:
    x = radians,
    = radians degrees

    click more
This entry was posted in maths. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *